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Outline

• Lecture I:

! Measuring a cross section

• focus on acceptance

• Lecture II:

! Measuring a property of a known particle

• Lecture III:

! Searching for a new particle

• focus on backgrounds
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Search for New Particles:

Experimentally

L=L=

Cross section Cross section !!
Efficiency:Efficiency:

optimized byoptimized by

experimentalistexperimentalist

!!NPNP = =
NNobsobs-N-NBGBG

""LdtLdt  ··  ##

Background:Background:

Measured from data / Measured from data / 

calculated from theorycalculated from theory

Number of observed Number of observed 

events: counted events: counted 

Luminosity:Luminosity:

Determined by accelerator, Determined by accelerator, 

 trigger  trigger prescaleprescale, , ……

• Exactly like with measuring the cross section…
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But we need to observe first!

• When we don’t know if a particle exists our first

question is: “Does it exist?”

• => significance of signal

! I.e. how consistent is the number of observed events with

the number of background events?

! Background expectation: NBG

• Expect it to fluctuate statistically by $NBG ~ !NBG

! Signal expectation: NSignal

! Statistical Significance: NSignal/$NBG ~ NSignal / !NBG

• Often called S/!B

in Gaussian limit

5!3!significance

5.7x10-80.3%Probability of stat. fluctuation

observationevidence

In real life: systematic uncertainties also contribute to $NBG 
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Search analyses

• Primary focus is background estimate
! Determines whether or not an observation can be made

! Cuts for background reduction studied often using
benchmark New Physics scenario

• Also model-independent analyses..

• Secondary focus is acceptance/efficiency
determination: required only
! when putting an upper limit on a cross section

! when measuring the cross section of the observed new
particle

• Need to know what it is though

• Or quote cross section for some effective cuts
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Example Analyses

• SUSY:

! Squarks/gluinos % jets + ET (+leptons)

• Higgs:

! Higgs -> WW

• High Mass Resonance

! Z’ (if I have time)
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Backgrounds

• Ideally you get the backgrounds to be small

! The smaller they are the less well you need to
know them

• Estimates based on

! Data only
• E.g. lepton fake rates

! Monte Carlo only
• For well known electroweak processes

! Monte Carlo / Data hybrid
• For e.g. W/Z+jets or W/Z+b-jets
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Squarks/Gluinos %

Jets + MEt (+ leptons)
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SUSY at the LHC

• Cross section much higher than at Tevatron, e.g.

! for m(g)=400 GeV: !LHC(gg)/ !Tevatron(gg)"20,000

! for m(q)=400 GeV: !LHC(gg)/ !Tevatron(gg)"1,000

• Since there are a lot more gluons at the LHC (lower x)

• At higher masses more phase space to decay in

cascades

! Results in additional leptons or jets
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SUSY at the LHC

• Example: m(q)~600 GeV, m(g)~700 GeV

• Require 4 jets, large missing ET and 0 or 1 lepton

• “Effective Mass” = sum of pT of all objects

• Similar and great (!) sensitivity in both modes

• Main backgrounds: top, W/Z+jets, QCD multi-jet

0 leptons 1 leptonpreliminary preliminary

~~

But how do we know the backgrounds!?!
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Instrumental Backgrounds

• Missing ET distribution subject to many experimental
effects
! If anything goes wrong it will affect missing ET

After selection of “good runs”

After requirement of

vertex in tracker

After “clean-up” cuts:

- event EM fraction > 0.1

- event charge fraction > 0.1

- !1 jet with ET>10 GeV

- Etotal < "s

from Avi Yagil
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Sources of Instrumental Background

• Calorimeter Noise
! Hot cells / coherent noise

• Usually localized and can be rejected

• Calorimeter dead regions
! Should only happen rarely in some runs

• Should be removed by DQ criteria

• Cosmic rays and beam halo muons showering hard
in calorimeter
! Usually have no vertex but can overlap with MinBias event

• Then have small tracking activity compared to calorimeter activity

! Shower often only in hadronic calorimeter

• Example handles:
! Track/calorimeter matches

! Is direction of missing energy uniform?
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Beam-Halo Muon Background

• Muon that comes from beam and goes through
shielding

• Can cause showers in calorimeters

! Shower usually looks not very much like
physics jet

• Often spike at certain azimuthal angles: '

! But there is lots of those muons!

! Can even cause problem for trigger rate
(0                 3               6



14

Some Cosmics and Beam-halo events

• Bigger problem for mono-jet
than for multi-jet searches

• Can use

! topological filters to reject
events

! Track matching
calorimeter cluster
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Physics Backgrounds

• QCD multi-jet (mosty for 0-lepton case)

! Missing ET due to

• Poor jet resolution /  cracks in calorimeters

• Neutrino momentum in semi-leptonic b/c- decays

• W/Z+jets

! Missing ET due to )’s from Z%)), W%l)

• Top

! Missing ET due to )’s from tt%WbWb % l) +X

How do we estimate them?
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QCD Multi-jet

• Require large *(

! Between missing ET and

jets and between jets

! Suppresses QCD dijet

background due to jet

mismeasurements



17

Methods to estimate remaining QCD

multi-jet Background

1. CDF uses MC
• Validate in region of low *+and

low MET

• Extrapolate to large using MC

• Problem:

• Relies on full MC simulation
which can take “forever”

2. Parameterize truth jets with
response function from full
simulation

• Validate against full simulation

• Validate in region of lower MET

• Advantage:

• Do not need to simulate as
many events

• Need to make sure though that
parameterization is really
working
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Using Z(%ll)+jets for estimating

W/Z+jet background
• Use Z(%ll)+jets to extrapolate to Z(%)))+jets

• MET ~ pT(Z)

1 fb-1

CMS
derived Z%))

Z%µµ



19

W+jets background estimate

• Use Z->ll +jets also for this background too

! Rely on theoretical prediction for W+jets vs Z+jets

• This is well known though (<15%)!
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(Campbell, Ellis, et al. )
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Top and W+jets

background estimate
• Use region of low mT(W)

! Extrapolate to signal region using MC

! But may be contaminated by SUSY => overestimate BG

• depending on specifics of model
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Top and W+jets

background estimate
• Use region of low mT(W)

! Extrapolate to signal region using MC

! But may be contaminated by SUSY => overestimate

• depending on specifics of model

! Can attempt “SUSY background subtraction” to correct for it
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W+jets, Z+jets and Top background

• Checks at Tevatron 0-lepton
analysis

! Background sources:

• W/Z+jets, top

• Suppressed by vetoes:

! Events with jet with EM
fraction>90%

» Rejects electrons

! Events with isolated track

» Rejects muons, taus and
electrons

! Define control regions:

• W/Z+jets, top
! Make all selection cuts but invert

lepton vetoes

• Gives confidence in those
background estimates

! Modeled using Alpgen MC

! Cross sections determined using
NLO calculation

• May not work at LHC due to
expectation of large cascade
decays

EM fraction >90%

!1 isolated track
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Final Analysis Plots at the Tevatron

Data agree with background estimate => derive limits
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Cross Section Limits

• No excess in data

! Evaluate upper limit on cross section

! Find out where it crosses with theory

• Theory has large uncertainty: ~30%

! Crossing point with theory lower bound ~ represents limit

on squark/gluino mass
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Squark and Gluino Mass Limits

• Set constraints on

masses at EWK scale:

! M(g)>308 GeV

! M(q)>379 GeV

• Can also represented in

terms of GUT scale

parameters

! Within constrained

models

~

~
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LHC SUSY Discovery Reach

• With 1 fb-1:

! Sensitive to m(g)<1000 GeV/c2

• With 10 fb-1:

! Sensitive to m(g)<1800 GeV/c2

• Amazing potential!

! If data can be understood

! If current MC predictions are "ok

Tevatron

~

~
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Some Remarks on Advanced

Analysis Techniques

• Quite a few techniques available:
! Neural Network, Likelihood, Boosted

Decision Tree, Matrix Element, …

! No clear winner has yet been identified

• Generally NN least transparent probably

• Why do we trust them less than simple analyses?
! Simple kinematic quantities can be calculated at NLO by theorists

while e.g. NN distribution cannot

• Gives confidence, good cross-check!

! Techniques exploit correlations between variables

• Harder to understand if the MC models correlations correctly

• More validation needed (=> analysis takes longer)

! Less transparent

• Worry is always that it exploits some MC feature that does not reflect the
data

• Can and has been done of course though
! But only in mature experiments
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The Higgs Boson
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Higgs Production: Tevatron and LHC

dominant: gg% H, subdominant: HW, HZ, Hqq

LHCTevatron

!
(p

b
)
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Higgs Boson Decay

• Depends on Mass

• MH<130 GeV/c2:

!  bb dominant

!  WW and ,, subdominant

!  -- small but useful

• MH>130 GeV/c2:

!  WW dominant

!  ZZ cleanest

_
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• Higgs mass reconstruction impossible

due to two neutrinos in final state

• Make use of spin correlations to

suppress WW background:

• Higgs is scalar: spin=0
• leptons in H % WW(*) % l+l-)) are

collinear

• Main background:

• WW production

H % WW(*) % l+l-))
_

HH
!+

"

W-

W+

e-

"

W
-

W+

prel.
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• Event selection:
! 2 isolated e/µ :

• pT > 15, 10 GeV

! Missing ET >20 GeV

! Veto on

• Z resonance

• Energetic jets

• Main backgrounds

! SM WW production

! Top

! Drell-Yan

! Fake leptons

• Plot everything under the sun

! to convince yourself you have the

background right

New result!H%WW(*)%l+l-)) (l=e,µ)
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Jets faking Electrons

• Jets can pass electron ID cuts,

! Mostly due to

• early showering charged pions

• Conversions:'0%--%ee+X

• Semileptonic b-decays

. Difficult to model in MC

• Hard fragmentation

• Detailed simulation of calorimeter and
tracking volume

• Measured in inclusive jet data at
various ET thresholds

! Prompt electron content negligible:

• Njet~10 billion at 50 GeV!

! Fake rate per jet:

! Typical uncertainties 50%

F
ak

e 
R

at
e 

(%
)

1x10-51x10-4Tight cuts

5x10-35x10-4Loose cuts

ATLASCDF
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Plot Everything Under the Sun..

• Validates the background prediction

! Very often these plots “don’t work” since there is some problem

! Now plug all into sophisticated techniques!
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Result of Neural Network

• At high NN Output data fluctuated low

! No sign of Higgs boson
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Tevatron limits on the
Higgs boson cross section

• Lack of observation
! => an upper limit on the Higgs cross section

! I.e. if the cross section was large we would have seen it!

• Results presented typically as ratio:
! Experimental limit / theoretical cross section

! If this hits 1 we exclude the Higgs boson at that mass!

• Brand new result: exclude MH=170 GeV/c2
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Early Higgs Signals at LHC

H%WW* (mH=170 GeV)

ATLAS

LHC has about 4 times better
signal / background than Tevatron

CMS
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LHC SM Higgs Discovery Potential

5#

• 5! discovery over full mass range
with ~20 fb-1

! Most challenging at low mass

• 95% exclusion over full mass
range with ~4 fb-1
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Concluding Remarks

Data are very precious

• Treat them with the highest respect

• Try to not jump to conclusions too fast
! Data analysis is like detective work

• Try to use all you can to understand them
! Redundancy of detector

• tracker vs calorimeter etc.

! Complementary physics processes
• W’s vs Z’s etc.

! Monte Carlo tools and theoretical calculations

• Use your brain and your judgment

This was my very personal view on the key issues
of data analysis
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Thanks,

and lot’s of fun and luck

for your analyses
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High Mass Resonances



42

)

Resonances or Tails

• New resonant structure:

! New gauge boson:
• Z’ %ee, µµ, ,,, tt

• W’ %e), µ), ,), tb

! Randall-Sundrum Graviton:
• G%ee, µµ, ,,, --, WW, ZZ,…

• Tail:

! Large extra dimensions (ADD
model)

• Many many many resonances close
to each other:

• “Kaluza-Klein-Tower”: ee, µµ, ,,, --,
WW, ZZ,…

! Contact interaction

• Effective 4-point vertex
! E.g. via t-channel exchange of very

heavy particle

• Like Fermi’s /-decay
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Resonances or Tails

• New resonant structure:

! New gauge boson:
• Z’ %ee, µµ, ,,, tt

• W’ %e), µ), ,), tb

! Randall-Sundrum Graviton:
• G%ee, µµ, ,,, --, WW, ZZ,…

• Tail:

! Large extra dimensions (ADD
model)

• Many many many resonances close
to each other:

• “Kaluza-Klein-Tower”: ee, µµ, ,,, --,
WW, ZZ,…

! Contact interaction

• Effective 4-point vertex
! E.g. via t-channel exchange of very

heavy particle

• Like Fermi’s /-decay

)
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Dilepton Selection

• Background to two high
momentum leptons
! irreducible background is Drell-

Yan production

• Well known/calculated by MC

• NNLO calculation also available

! Other backgrounds:

• Jets faking leptons: reject by
making optimal lepton ID cuts

• WW, diphoton, etc. very small

• None of these backgrounds are
expected to make peaks in
mass distribution
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Neutral Spin-1 Bosons: Z’

• 3.8! excess at m(ee)=240 GeV/c2

• But need to evaluate how likely this happens somewhere in the analysis!

• Technique:

! Run Pseudo-experiments to see how often statistically on gets fluctuation of >3.8

• Result: 0.6% probability (2.5 !)

. Need to see how new data look like
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Interpreting the Mass plots

• No evidence for any deviation from
Standard Model => Set limits on
new physics
! Set limits on cross section x branching

ratio

• This is model independent, i.e. really
what we measure

• Any theorist can overlay their favorite
curve

• It remains valid independent of changes
in theory

• Always publish this!

• Here: !<4 fb at high mass

! Can also set limits on Z’ mass within
certain models

• This is model dependent

• Nice though for comparing experiments,
e.g. LEP vs Tevatron

M>966 GeVlimit

Z0%ee

For SM couplings:
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Alternative Method

• Fit for bump in mass

spectrum:

! Parameterize distribution

! Convolute with efficiency and

detector resolution

Significance given by ratio of

likelihood of signal-hypothesis

vs likelihood of null-hypothesis
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LHC Z´ Discovery Potential

• Probe >1 TeV already with 100 pb-1

• Improves by ~1 TeV for every factor 10 in luminosity

• Systematic uncertainties relatively negligible in these

analyses

preliminary


